Superposition

Free SHM

EOM:
$$-kx = m\ddot{x}$$

Solutions:
$$x_1(t) = A_1 \cos(\omega_1 t + \phi_1)$$

$$x_2(t) = A_2 \cos(\omega_2 t + \phi_2)$$

Superposition: the sum of solutions to an EOM is also a solution . . . if the EOM is linear.

x and its derivatives appear only to first power.

...or a linear combination: $c_1x_1 + c_2x_2$

Is the linear combination useful?

initial displacement, begin at rest x_o , $v_o = 0$

$$x_1(0) = A_1 \cos(\phi_1) = x_0$$

$$\dot{x}_1(0) = -A_1 \omega_o \sin(\phi_1) = 0$$

$$\phi_1 = 0, \quad x_0 = A_1$$

$$x_1(t) = x_o \cos(\omega_o t)$$

initial velocity, begin at origin v_o , $x_o = 0$

$$x_2(0) = A_2 \cos(\phi_2) = 0$$

$$\phi_2 = \frac{\pi}{2}$$

$$\dot{x}_2(0) = -A_2 \omega_o \sin\left(\frac{\pi}{2}\right) = v_o$$

$$A_2 = \frac{-v_o}{\omega_o}$$

$$x_2(t) = \frac{-v_o}{\omega_o} \cos(\omega_o t + \frac{\pi}{2})$$

initial displacement x_o and velocity v_o

$$x_3(0) = A_3 \cos(\phi_3) = x_0$$

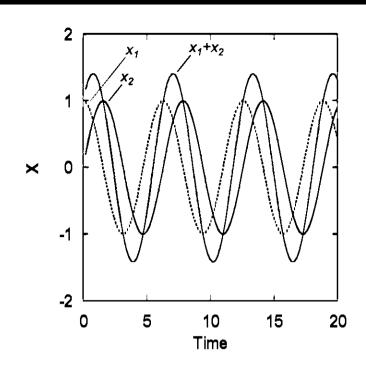
$$\dot{x}_3(0) = -A_3 \omega_o \sin(\phi_3) = v_o$$

Solve each for A_3 , equate, solve for ϕ :

$$\phi_3 = \tan^{-1} \left[\frac{-v_o}{\omega_o x_o} \right]$$

Plug back into top equation to get A_3 :

$$A_3 = \frac{x_o}{\cos(\tan^{-1}(-v_o/\omega_o x_o))}$$



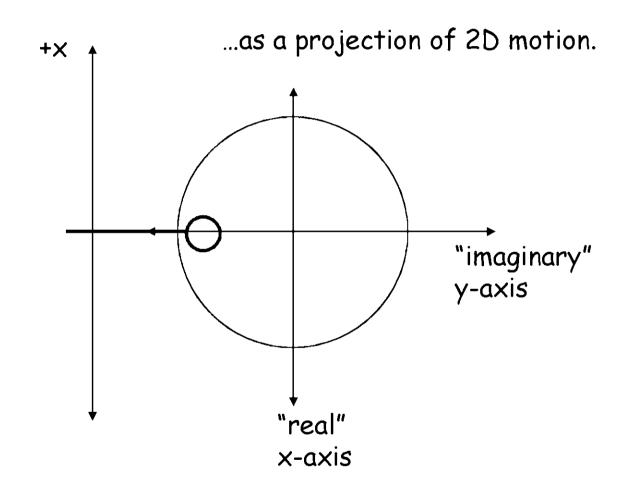
Superposition: The motion resulting from two simultaneous initial conditions is equal to the sum of the motions resulting from each initial condition. if the EOM is linear.

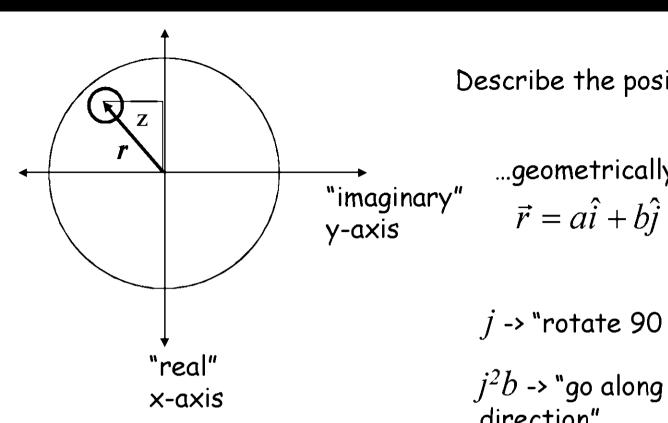
Solution:

$$x_3(t) = \frac{x_o}{\cos(\tan^{-1}(-v_o/\omega_o x_o))}\cos(\omega_o t + \tan^{-1}(-v_o/\omega_o x_o))$$

The trig is getting complicated, let's try something else...

Imagine SHM in 1D...





Describe the position...

...geometrically

$$\vec{r} = a\hat{i} + b\hat{j}$$

OR

...algebraically

$$z = a + jb$$

 $j \rightarrow$ "rotate 90 degrees"

 j^2b -> "go along original axis in opposite direction"

$$j^2 = -1$$

$$j = \sqrt{-1}$$
 ... an imaginary number!

$$\sin(t) = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \frac{t^9}{9!} \cdots \qquad \cos(t) = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \frac{t^8}{8!} \cdots$$

Circular motion in complex plane:

$$\cos(t) + j\sin(t) = 1 + jt - \frac{t^2}{2!} - j\frac{t^3}{3!} + \frac{t^4}{4!} + j\frac{t^5}{5!} \cdots$$

$$=1+jt+\frac{(jt)^2}{2!}+\frac{(jt)^3}{3!}+\frac{(jt)^4}{4!}+\frac{(jt)^5}{5!}\cdots$$

...expansion of exp(jt)!

$$\cos(t) + j\sin(t) = e^{jt}$$

"Euler's Formula" - imaginary exponentials oscillate!

Describe SHM in the complex plane...

$$z(t) = Ae^{j(\omega t + \phi)}$$

Does it work?

$$-k[Ae^{j(\omega t+\phi)}] = m\frac{d^2}{dt^2}[Ae^{j(\omega t+\phi)}]$$

$$-kAe^{j(\omega t+\phi)} = -mA\omega^2 e^{j(\omega t+\phi)}$$

Yes, if: $k = m\omega^2$

A and ϕ take any value

Don't forget!!! $x(t) = \text{Re}[z(t)] = A\cos(\omega t + \phi)$ Keepin' it real!

Same A and ω , but different ϕ :

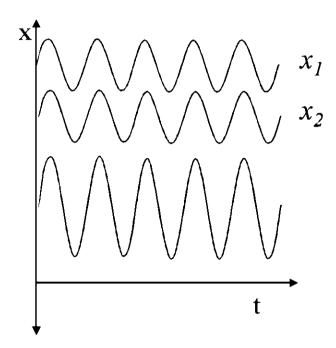
$$z_1 = Ae^{j(\omega t + \phi_1)} \qquad z_2 = Ae^{j(\omega t + \phi_2)}$$

$$z_{1+2} = A\left(e^{j(\omega t + \phi_1)} + e^{j(\omega t + \phi_2)}\right)$$

$$z_{1+2} = Ae^{j\omega t} \left(e^{j\phi_1} + e^{j\phi_2} \right) \frac{e^{j\phi_1}}{e^{j\phi_1}}$$

$$z_{1+2} = Ae^{j(\omega t + \phi_1)} (1 + e^{j(\phi_2 - \phi_1)})$$

x_1 and x_2 in phase

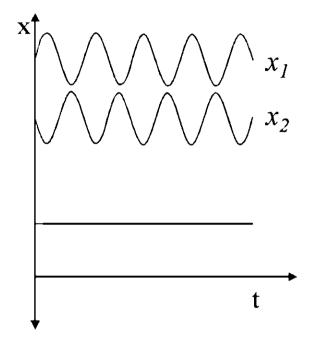


$$\phi_1 - \phi_2 = 0$$

$$z_{1+2} = 2Ae^{j(\omega t + \phi_1)}$$

$$x_{1+2} = 2A\cos(\omega t + \phi_1)$$

x_1 and x_2 out of phase



$$\phi_1 - \phi_2 = \pi$$

$$z_{1+2} = Ae^{j(\omega t + \phi_1)} (1 + e^{j\pi})$$
$$z_{1+2} = 0$$

$$x_{1+2} = 0$$

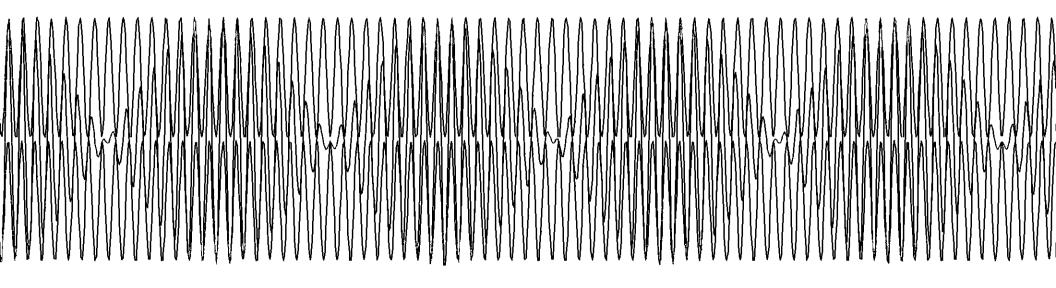
Same A and ϕ , different ω :

Stick with trig...
$$x_{1+2} = A[\cos(\omega_1 t) + \cos(\omega_2 t)]$$

$$\cos(\alpha) + \cos(\beta) = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

Then:
$$x_{1+2} = 2A\cos\left(\frac{\omega_1 + \omega_2}{2}t\right)\cos\left(\frac{\omega_1 - \omega_2}{2}t\right)$$

$$\omega_1 \approx \omega_2$$
 yields beats.



Systems with linear EOMs obey the Principle of Superposition: solutions to the EOM can be summed to make more complicated solutions.

