Damped SHM

$$\sum F = -b\dot{x} - kx = m\ddot{x}$$

$$\omega_o = \sqrt{k/m}$$
 $\gamma = b/m$

"Natural Frequency" "Damping Parameter" (rad/s)

 (s^{-1})

$$\ddot{x} + \gamma \, \dot{x} + \omega_o^2 x = 0$$

EOM: damped oscillator

$$z(t) = Ae^{j(pt+\phi)}$$

$$j^{2}p^{2}Ae^{j(pt+\phi)} + \gamma jpAe^{j(pt+\phi)} + \omega_{o}^{2}Ae^{j(pt+\phi)} = 0$$

$$Ae^{j(pt+\phi)}\left(-p^2+\gamma jp+\omega_o^2\right)=0$$

$$A=0$$

$$-p^2+\gamma jp+\omega_o^2=0$$
ivial solution"

"trivial solution"

Actually 2 equations:

Real = 0 Imaginary = 0
$$-p^{2} + \omega_{o}^{2} = 0 \qquad \qquad \gamma p = 0$$

$$p = \omega_{o} \qquad \qquad \gamma = 0$$

... also trivial!

Try a complex frequency:

$$z(t) = Ae^{j((n+js)t+\phi)}$$

$$-(n+js)^{2} + \gamma j(n+js) + \omega_{o}^{2} = 0$$

$$-n^{2} - 2jns + s^{2} + \gamma jn - \gamma s + \omega_{o}^{2} = 0$$

Real

$$-n^2 + s^2 - \gamma s + \omega_0^2 = 0$$

$$-n^2 + \frac{\gamma^2}{4} - \frac{\gamma^2}{2} + \omega_o^2 = 0$$

<u>Imaginary</u>

$$-2jns + \gamma jn = 0$$

$$s = \frac{\gamma}{2}$$

$$n^2 = \omega_o^2 - \frac{\gamma^2}{4}$$

A, ϕ are free constants.

$$z(t) = Ae^{j\left(\left(\sqrt{\omega_o^2 - \frac{\gamma^2}{4}} + j\frac{\gamma}{2}\right)t + \phi\right)}$$

$$z(t) = Ae^{-\frac{\gamma}{2}t}e^{j\left(\sqrt{\omega_o^2 - \frac{\gamma^2}{4}}t + \phi\right)}$$

$$x(t) = Ae^{-\frac{\gamma}{2}t}\cos\left(\sqrt{\omega_o^2 - \frac{\gamma^2}{4}}t + \phi\right)$$

- * amplitude decays due to damping
- * frequency reduced due to damping

How damped?

Quality factor: unitless ratio of natural frequency to damping parameter

$$Q \equiv \frac{\omega_0}{\gamma}$$

Sometimes write solution in terms of wo and Q

$$z(t) = Ae^{-\frac{\omega_o}{2Q}t}e^{j\left(\omega_o\sqrt{1-\frac{1}{4Q^2}}t+\phi\right)}$$

Sometimes write EOM in terms of wo and Q:

$$\ddot{x} + \frac{\omega_o}{Q} \dot{x} + {\omega_o}^2 x = 0$$

1. "Under Damped" or "Lightly Damped": Q >> 1

Oscillates at $\sim \omega_o$ (slightly less)

Looks like SHM (constant A) over a few cycles:

Amplitude drops by 1/e in Q/π cycles.

2. "Over Damped": $Q << 1 \quad \omega_o << \gamma$

$$z(t) = Ae^{-\frac{\gamma}{2}t} e^{j\left(\sqrt{\omega_o^2 - \frac{\gamma^2}{4}}t + \phi\right)}$$
imaginary!

$$z(t) = Ae^{-\frac{\gamma}{2}t} e^{j\left(j\sqrt{\frac{\gamma^2}{4} - \omega_o^2}t + \phi\right)}$$

$$z(t) = Ae^{-\frac{\gamma}{2}t}e^{-\sqrt{\frac{\gamma^2}{4}-\omega_o^2}t}$$
 part of A

Still need two constants for the 2nd order EOM:

$$z(t) = A_1 e^{-\left(\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} - \omega_o^2}\right)t} + A_2 e^{-\left(\frac{\gamma}{2} - \sqrt{\frac{\gamma^2}{4} - \omega_o^2}\right)t}$$

Over Damped

$$\omega_o = 1$$
, $\gamma = 10$, $Q = .1$, $x_o = 1$

3 "Critically Damped": Q=0.5 $\gamma=2\omega_o$

$$z(t) = Ae^{-\frac{\gamma}{2}t}e^{j\left(\sqrt{\omega_o}\left(-\frac{\gamma^2}{4}t + \phi\right)\right)}$$

$$z(t) = (A_1 + A_2)e^{-\left(\frac{\gamma}{2}\right)t}$$

...really just one constant, and we need two. Real solution:

$$z(t) = (A + Bt)e^{-\left(\frac{\gamma}{2}\right)t}$$

Critically Damped

Fastest approach to zero with no overshoot.

Real oscillators lose energy due to damping. This can be represented by a damping force in the equation of motion, which leads to a decaying oscillation solution. The relative size of the resonant frequency and damping parameter define different behaviors: lightly damped, critically damped, or over damped.

