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EOM: damped oscillator




Guess a complex solution:  z(f) = A/ (P1+9)
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“trivial solution” — p2 +yYp + a)o2 =0

Actually 2 equations:

Real = 0 Imaginary = O
-p'+o,” =0 vp =0
p =0, y=0
.. also trivial |



Try a complex frequency: z(t) = Aef((”ﬂ's)”ffﬁ)
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* amplitude decays due to damping
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* frequency reduced due to damping
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How damped?

Quality factor: unitless ratio of natural frequency to damping parameter

Sometimes write EOM in terms of wo and Q:
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Xi+—=2x+w, x=0



1. "Under Damped" or “Lightly Damped”: (O >>1
Oscillates at ~w, (slightly less)
Looks like SHM (constant A) over a few cycles:
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Amplitude drops by 1/e in Q/= cycles.



2."Over Damped”: (O<<l1 o, <<y

_7 J‘(\/woz—é t+¢}
z(t)y=Ae * e
L‘C—% imaginary!
2
Y, J{J\/%-a)oz t+¢J
z(t)=Ade * e

7, —/7’_2-@0% _part of 4
z(t)=Ae e '* //J

Still need two constants for the 2 order EOM:

No oscillations!




Over Damped
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3 "Critically Damped”: O =0.5 y =20,

—ZI j( Do '§t+¢}
z(t)y=Ade ? e

0
2(6)= (A4 + 4, )e_@t

..really just one constant, and we need two. Real solution:

z(t)=(A+ Bt)e—(g)t



Critically Damped
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Fastest approach to zero with no overshoot.



Real oscillators lose energy due to damping. This can be
represented by a damping force in the equation of
motion, which leads to a decaying oscillation solution.
The relative size of the resonant frequency and damping
parameter define different behaviors: lightly damped,
critically damped, or over damped.




