Publications

J. R. Matthews, C. R. Shirazinejad, G. A. Isakson, S. M. E. Demers and J. H. Hafner, Structural Analysis by Enhanced Raman ScatteringNano Letters 2017, 17, 2172-2177.

S. M. E. Demers, L. J. H. Hsieh, C. R. Shirazinejad, J. L. A. Garcia, J. R. Matthews and J. H. Hafner, Ultraviolet Analysis of Gold Nanorod and Nanosphere Solutions, Journal of Physical Chemistry C 2017, 121, 5201-5207.


[72] J. R. Matthews, C. M. Payne and J. H. Hafner, Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering, Langmuir 2015, 31, 9893-9900.


[71] C. M. Payne, D. E. Tsentalovich, D. N. Benoit, L. J. E. Anderson, W. H. Guo, V. L. Colvin, M. Pasquali and J. H. Hafner, Synthesis and Crystal Structure of Gold Nanobelts, Chemistry of Materials 2014, 26, 1999-2004.


[70] C. M. Payne, L. J. E. Anderson and J. H. Hafner, Novel Plasmonic Structures Based on Gold Nanobelts, Journal of Physical Chemistry C 2013, 117, 4734-4739.

[69] S. Balamurugan, K. M. Mayer, S. Lee, S. A. Soper, J. H. Hafner and D. A. Spivak, Nanostructure shape effects on response of plasmonic aptamer sensors, Journal of Molecular Recognition 2013, 26, 402-407.

[68] L. J. E. Anderson, Y. R. Zhen, C. M. Payne, P. Nordlander and J. H. Hafner, Gold Nanobelts as High Confinement Plasmonic Waveguides, Nano Letters 2013, 13, 6256-6261.


[67] C. U. Wang, Y. Arai, I. Kim, W. Jang, S. Lee, J. H. Hafner, E. Jeoung, D. Jung and Y. Kwon, Surface-modified gold nanorods for specific cell targeting, Journal of the Korean Physical Society 2012, 60, 1700-1707.

[66] S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan and J. H. Hafner, Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates, Advanced Materials 2012, 24, 5261-5266.

[65] S. Lal, J. H. Hafner, N. J. Halas, S. Link and P. Nordlander, Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices, Accounts of Chemical Research 2012, 45, 1887-1895.

[64] N. J. Halas, S. Lal, S. Link, W. S. Chang, D. Natelson, J. H. Hafner and P. Nordlander, A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University, Advanced Materials 2012, 24, 4842-4877.


[63] K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews 2011, 111, 3828-3857.

[62] E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson and D. O. Lapotko, Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer, Theranostics 2011, 1, 3-17.

[61] S. Lee, L. J. E. Anderson, C. M. Payne and J. H. Hafner, Structural Transition in the Surfactant Layer that Surrounds Gold Nanorods as Observed by Analytical Surface-Enhanced Raman Spectroscopy, Langmuir 2011, 27, 14748-14756.

[60] L. J. E. Anderson, C. M. Payne, Y. R. Zhen, P. Nordlander and J. H. Hafner, A Tunable Plasmon Resonance in Gold Nanobelts, Nano Letters 2011, 11, 5034-5037.


[59] D. S. Wagner, N. A. Delk, E. Y. Lukianova-Hleb, J. H. Hafner, M. C. Farach-Carson and D. O. Lapotko, The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts, Biomaterials 2010, 31, 7567-7574.

[58] K. M. Mayer, F. Hao, S. Lee, P. Nordlander and J. H. Hafner, A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 2010, 21.

[57] E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner and D. O. Lapotko, Generation and detection of plasmonic nanobubbles in zebrafish, Nanotechnology 2010, 21.

[56] E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner and D. O. Lapotko, Tunable plasmonic nanobubbles for cell theranostics, Nanotechnology 2010, 21.

[55] E. Y. Lukianova-Hleb, L. J. E. Anderson, S. Lee, J. H. Hafner and D. O. Lapotko, Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles, Physical Chemistry Chemical Physics 2010, 12, 12237-12244.

[54] E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner and D. O. Lapotko, Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles, Acs Nano 2010, 4, 2109-2123.

[53] Y. S. Hu, J. Jeon, T. J. Seok, S. Lee, J. H. Hafner, R. A. Drezek and H. Choo, Enhanced Raman Scattering from Nanoparticle-Decorated Nanocone Substrates: A Practical Approach to Harness In-Plane Excitation, Acs Nano 2010, 4, 5721-5730.

[52] L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee and J. H. Hafner, Quantitative Measurements of Individual Gold Nanoparticle Scattering Cross Sections, Journal of Physical Chemistry C 2010, 114, 11127-11132.

[51] L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner and D. O. Lapotko, Optically guided controlled release from liposomes with tunable plasmonic nanobubbles, Journal of Controlled Release 2010, 144, 151-158.


[50] B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. E. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. N. Dinney, R. A. Drezek, J. L. West and J. H. Hafner, The stabilization and targeting of surfactant-synthesized gold nanorods, Nanotechnology 2009, 20.

[49] S. Lee, K. M. Mayer and J. H. Hafner, Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates, Analytical Chemistry 2009, 81, 4450-4455.


[48] Y. Yang, K. M. Mayer, N. S. Wickremasinghe and J. H. Hafner, Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy, Biophysical Journal 2008, 95, 5193-5199.

[47] C. L. Nehl and J. H. Hafner, Shape-dependent plasmon resonances of gold nanoparticles, Journal of Materials Chemistry 2008, 18, 2415-2419.

[46] K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl and J. H. Hafner, A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods, Acs Nano 2008, 2, 687-692.

[45] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander and N. J. Halas, Close encounters between two nanoshells, Nano Letters 2008, 8, 1212-1218.

[44] E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner and D. O. Lapotko, Photothermal bubbles as optical scattering probes for imaging living cells, Nanomedicine 2008, 3, 797-812.

[43] E. Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, B. C. Rostro, S. A. Zhdanok and D. O. Lapotko, LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles, Nanomedicine 2008, 3, 647-667.


[42] Y. Yang, K. M. Mayer and J. H. Hafner, Quantitative membrane electrostatics with the atomic force microscope, Biophysical Journal 2007, 92, 1966-1974.

[41] F. Hao, C. L. Nehl, J. H. Hafner and P. Nordlander, Plasmon resonances of a gold nanostar, Nano Letters 2007, 7, 729-732.


[40] H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander and N. J. Halas, Symmetry breaking in individual plasmonic nanoparticles, Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 10856-10860.

[39] C. L. Nehl, H. W. Liao and J. H. Hafner, Optical properties of star-shaped gold nanoparticles, Nano Letters 2006, 6, 683-688.

[38] H. W. Liao, C. L. Nehl and J. H. Hafner, Biomedical applications of plasmon resonant metal nanoparticles, Nanomedicine 2006, 1, 201-208.

[37] A. Gulati, H. Liao and J. H. Hafner, Monitoring gold nanorod synthesis by localized surface plasmon resonance, Journal of Physical Chemistry B 2006, 110, 22323-22327.


[36] N. S. Wickremasinghe and J. H. Hafner, Protein crystals as scanned probes for recognition atomic force microscopy, Nano Letters 2005, 5, 2418-2421.

[35] H. W. Liao and J. H. Hafner, Gold nanorod bioconjugates, Chemistry of Materials 2005, 17, 4636-4641.


[34] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas and J. H. Hafner, Scattering spectra of single gold nanoshells, Nano Letters 2004, 4, 2355-2359.

[33] H. W. Liao and J. H. Hafner, Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition, Journal of Physical Chemistry B 2004, 108, 6941-6943.

[32] H. W. Liao and J. H. Hafner, Monitoring gold nanorod synthesis on surfaces, Journal of Physical Chemistry B 2004, 108, 19276-19280.


[31] A. S. Johnson, C. L. Nehl, M. G. Mason and J. H. Hafner, Fluid electric force microscopy for charge density mapping in biological systems, Langmuir 2003, 19, 10007-10010.

[30] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Plastic deformations in mechanically strained single-walled carbon nanotubes, Physical Review B 2003, 67.


[29] A. G. Souza, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, R. Saito, A. K. Swan, M. S. Unlu, B. B. Goldberg, J. H. Hafner, C. M. Lieber and M. A. Pimenta, Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes, Physical Review B 2002, 65.

[28] A. G. Souza, A. Jorio, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, J. H. Hafner, C. M. Lieber, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Anomalous two-peak G ‘-band Raman effect in one isolated single-wall carbon nanotube, Physical Review B 2002, 65.

[27] A. G. Souza, A. Jorio, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, J. H. Hafner, C. M. Lieber and M. A. Pimenta, Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra, Chemical Physics Letters 2002, 354, 62-68.

[26] A. Jorio, A. G. Souza, V. W. Brar, A. K. Swan, M. S. Unlu, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects, Physical Review B 2002, 65.

[25] A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber and R. Saito, G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Physical Review B 2002, 65.

[24] A. Jorio, F. M. Matinaga, A. Righi, M. S. S. Dantas, M. A. Pimenta, A. G. Souza, J. Mendes, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Resonance Raman scattering: Nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes, Brazilian Journal of Physics 2002, 32, 921-924.


[23] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Physical Review Letters 2001, 86, 1118-1121.

[22] A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. H. Hafner, C. M. Lieber, F. M. Matinaga, M. S. S. Dantas and M. A. Pimenta, Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering, Physical Review B 2001, 63.

[21] A. G. Souza, A. Jorio, J. H. Hafner, C. M. Lieber, R. Saito, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Electronic transition energy E-ii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio, Physical Review B 2001, 63.

[20] M. A. Pimenta, A. Jorio, S. D. M. Brown, A. G. Souza, G. Dresselhaus, J. H. Hafner, C. M. Lieber, R. Saito and M. S. Dresselhaus, Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes, Physical Review B 2001, 64.

[19] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Chirality-dependent G-band Raman intensity of carbon nanotubes, Physical Review B 2001, 64.

[18] T. W. Odom, J. H. Hafner and C. M. Lieber, Scanning probe microscopy studies of carbon nanotubes, Carbon Nanotubes 2001, 80, 173-211.

[17] J. H. Hafner, C. L. Cheung, A. T. Woolley and C. M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Progress in Biophysics & Molecular Biology 2001, 77, 73-110.

[16] M. Bockrath, W. J. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham and H. K. Park, Resonant electron scattering by defects in single-walled carbon nanotubes, Science 2001, 291, 283-285.

[15] J. H. Hafner, C. L. Cheung, T. H. Oosterkamp and C. M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, Journal of Physical Chemistry B 2001, 105, 743-746.

[14] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Electronic properties of mechanically induced kinks in single-walled carbon nanotubes, Applied Physics Letters 2001, 78, 3693-3695.

[13] G. R. Schnitzler, C. L. Cheung, J. H. Hafner, A. J. Saurin, R. E. Kingston and C. M. Lieber, Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips, Molecular and Cellular Biology 2001, 21, 8504-8511.


[12] T. T. Ding, J. C. Rochet, K. A. Conway, J. H. Hafner, S. J. Lee, C. M. Lieber and P. T. Lansbury, Molecular pathogenesis of Parkinson’s disease: results from atomic force microscopy of nonfibrillar alpha-synuclein assemblies., Biochemistry 2000, 39, 1574-1574.

[11] C. L. Cheung, J. H. Hafner and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 3809-3813.

[10] C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim and C. M. Lieber, Growth and fabrication with single-walled carbon nanotube probe microscopy tips, Applied Physics Letters 2000, 76, 3136-3138.

[9] A. T. Woolley, C. L. Cheung, J. H. Hafner and C. M. Lieber, Structural biology with carbon nanotube AFM probes, Chemistry & Biology 2000, 7, R193-R204.


[8] J. H. Hafner, C. L. Cheung and C. M. Lieber, Growth of nanotubes for probe microscopy tips, Nature 1999, 398, 761-762.

[7] J. H. Hafner, C. L. Cheung and C. M. Lieber, Direct growth of single-walled carbon nanotube scanning probe microscopy tips, Journal of the American Chemical Society 1999, 121, 9750-9751.


[6] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith and R. E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters 1998, 296, 195-202.

[5] J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Fullerene pipes, Science 1998, 280, 1253-1256.


[4] J. Liu, H. J. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Fullerene ‘crop circles’, Nature 1997, 385, 780-781.


[3] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature 1996, 384, 147-150.


[2] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Unraveling Nanotubes – Field-Emission from an Atomic Wire, Science 1995, 269, 1550-1553.


[1] D. T. Colbert, J. Zhang, S. M. Mcclure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E. Smalley, Growth and Sintering of Fullerene Nanotubes, Science 1994, 266, 1218-1222.

 



Leave a Reply