Publications

J. R. Matthews, C. R. Shirazinejad, G. A. Isakson, S. M. E. Demers and J. H. Hafner, Structural Analysis by Enhanced Raman ScatteringNano Letters 2017, accepted.

S. M. E. Demers, L. J. H. Hsieh, C. R. Shirazinejad, J. L. A. Garcia, J. R. Matthews and J. H. Hafner, Ultraviolet Analysis of Gold Nanorod and Nanosphere Solutions, Journal of Physical Chemistry C 2017, accepted.


[72] J. R. Matthews, C. M. Payne and J. H. Hafner, Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering, Langmuir 2015, 31, 9893-9900.


[71] C. M. Payne, D. E. Tsentalovich, D. N. Benoit, L. J. E. Anderson, W. H. Guo, V. L. Colvin, M. Pasquali and J. H. Hafner, Synthesis and Crystal Structure of Gold Nanobelts, Chemistry of Materials 2014, 26, 1999-2004.


[70] C. M. Payne, L. J. E. Anderson and J. H. Hafner, Novel Plasmonic Structures Based on Gold Nanobelts, Journal of Physical Chemistry C 2013, 117, 4734-4739.

[69] S. Balamurugan, K. M. Mayer, S. Lee, S. A. Soper, J. H. Hafner and D. A. Spivak, Nanostructure shape effects on response of plasmonic aptamer sensors, Journal of Molecular Recognition 2013, 26, 402-407.

[68] L. J. E. Anderson, Y. R. Zhen, C. M. Payne, P. Nordlander and J. H. Hafner, Gold Nanobelts as High Confinement Plasmonic Waveguides, Nano Letters 2013, 13, 6256-6261.


[67] C. U. Wang, Y. Arai, I. Kim, W. Jang, S. Lee, J. H. Hafner, E. Jeoung, D. Jung and Y. Kwon, Surface-modified gold nanorods for specific cell targeting, Journal of the Korean Physical Society 2012, 60, 1700-1707.

[66] S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan and J. H. Hafner, Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates, Advanced Materials 2012, 24, 5261-5266.

[65] S. Lal, J. H. Hafner, N. J. Halas, S. Link and P. Nordlander, Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices, Accounts of Chemical Research 2012, 45, 1887-1895.

[64] N. J. Halas, S. Lal, S. Link, W. S. Chang, D. Natelson, J. H. Hafner and P. Nordlander, A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University, Advanced Materials 2012, 24, 4842-4877.


[63] K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews 2011, 111, 3828-3857.

[62] E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson and D. O. Lapotko, Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer, Theranostics 2011, 1, 3-17.

[61] S. Lee, L. J. E. Anderson, C. M. Payne and J. H. Hafner, Structural Transition in the Surfactant Layer that Surrounds Gold Nanorods as Observed by Analytical Surface-Enhanced Raman Spectroscopy, Langmuir 2011, 27, 14748-14756.

[60] L. J. E. Anderson, C. M. Payne, Y. R. Zhen, P. Nordlander and J. H. Hafner, A Tunable Plasmon Resonance in Gold Nanobelts, Nano Letters 2011, 11, 5034-5037.


[59] D. S. Wagner, N. A. Delk, E. Y. Lukianova-Hleb, J. H. Hafner, M. C. Farach-Carson and D. O. Lapotko, The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts, Biomaterials 2010, 31, 7567-7574.

[58] K. M. Mayer, F. Hao, S. Lee, P. Nordlander and J. H. Hafner, A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 2010, 21.

[57] E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner and D. O. Lapotko, Generation and detection of plasmonic nanobubbles in zebrafish, Nanotechnology 2010, 21.

[56] E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner and D. O. Lapotko, Tunable plasmonic nanobubbles for cell theranostics, Nanotechnology 2010, 21.

[55] E. Y. Lukianova-Hleb, L. J. E. Anderson, S. Lee, J. H. Hafner and D. O. Lapotko, Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles, Physical Chemistry Chemical Physics 2010, 12, 12237-12244.

[54] E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner and D. O. Lapotko, Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles, Acs Nano 2010, 4, 2109-2123.

[53] Y. S. Hu, J. Jeon, T. J. Seok, S. Lee, J. H. Hafner, R. A. Drezek and H. Choo, Enhanced Raman Scattering from Nanoparticle-Decorated Nanocone Substrates: A Practical Approach to Harness In-Plane Excitation, Acs Nano 2010, 4, 5721-5730.

[52] L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee and J. H. Hafner, Quantitative Measurements of Individual Gold Nanoparticle Scattering Cross Sections, Journal of Physical Chemistry C 2010, 114, 11127-11132.

[51] L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner and D. O. Lapotko, Optically guided controlled release from liposomes with tunable plasmonic nanobubbles, Journal of Controlled Release 2010, 144, 151-158.


[50] B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. E. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. N. Dinney, R. A. Drezek, J. L. West and J. H. Hafner, The stabilization and targeting of surfactant-synthesized gold nanorods, Nanotechnology 2009, 20.

[49] S. Lee, K. M. Mayer and J. H. Hafner, Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates, Analytical Chemistry 2009, 81, 4450-4455.


[48] Y. Yang, K. M. Mayer, N. S. Wickremasinghe and J. H. Hafner, Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy, Biophysical Journal 2008, 95, 5193-5199.

[47] C. L. Nehl and J. H. Hafner, Shape-dependent plasmon resonances of gold nanoparticles, Journal of Materials Chemistry 2008, 18, 2415-2419.

[46] K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl and J. H. Hafner, A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods, Acs Nano 2008, 2, 687-692.

[45] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander and N. J. Halas, Close encounters between two nanoshells, Nano Letters 2008, 8, 1212-1218.

[44] E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner and D. O. Lapotko, Photothermal bubbles as optical scattering probes for imaging living cells, Nanomedicine 2008, 3, 797-812.

[43] E. Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, B. C. Rostro, S. A. Zhdanok and D. O. Lapotko, LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles, Nanomedicine 2008, 3, 647-667.


[42] Y. Yang, K. M. Mayer and J. H. Hafner, Quantitative membrane electrostatics with the atomic force microscope, Biophysical Journal 2007, 92, 1966-1974.

[41] F. Hao, C. L. Nehl, J. H. Hafner and P. Nordlander, Plasmon resonances of a gold nanostar, Nano Letters 2007, 7, 729-732.


[40] H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander and N. J. Halas, Symmetry breaking in individual plasmonic nanoparticles, Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 10856-10860.

[39] C. L. Nehl, H. W. Liao and J. H. Hafner, Optical properties of star-shaped gold nanoparticles, Nano Letters 2006, 6, 683-688.

[38] H. W. Liao, C. L. Nehl and J. H. Hafner, Biomedical applications of plasmon resonant metal nanoparticles, Nanomedicine 2006, 1, 201-208.

[37] A. Gulati, H. Liao and J. H. Hafner, Monitoring gold nanorod synthesis by localized surface plasmon resonance, Journal of Physical Chemistry B 2006, 110, 22323-22327.


[36] N. S. Wickremasinghe and J. H. Hafner, Protein crystals as scanned probes for recognition atomic force microscopy, Nano Letters 2005, 5, 2418-2421.

[35] H. W. Liao and J. H. Hafner, Gold nanorod bioconjugates, Chemistry of Materials 2005, 17, 4636-4641.


[34] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas and J. H. Hafner, Scattering spectra of single gold nanoshells, Nano Letters 2004, 4, 2355-2359.

[33] H. W. Liao and J. H. Hafner, Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition, Journal of Physical Chemistry B 2004, 108, 6941-6943.

[32] H. W. Liao and J. H. Hafner, Monitoring gold nanorod synthesis on surfaces, Journal of Physical Chemistry B 2004, 108, 19276-19280.


[31] A. S. Johnson, C. L. Nehl, M. G. Mason and J. H. Hafner, Fluid electric force microscopy for charge density mapping in biological systems, Langmuir 2003, 19, 10007-10010.

[30] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Plastic deformations in mechanically strained single-walled carbon nanotubes, Physical Review B 2003, 67.


[29] A. G. Souza, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, R. Saito, A. K. Swan, M. S. Unlu, B. B. Goldberg, J. H. Hafner, C. M. Lieber and M. A. Pimenta, Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes, Physical Review B 2002, 65.

[28] A. G. Souza, A. Jorio, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, J. H. Hafner, C. M. Lieber, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Anomalous two-peak G ‘-band Raman effect in one isolated single-wall carbon nanotube, Physical Review B 2002, 65.

[27] A. G. Souza, A. Jorio, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, J. H. Hafner, C. M. Lieber and M. A. Pimenta, Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra, Chemical Physics Letters 2002, 354, 62-68.

[26] A. Jorio, A. G. Souza, V. W. Brar, A. K. Swan, M. S. Unlu, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects, Physical Review B 2002, 65.

[25] A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber and R. Saito, G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Physical Review B 2002, 65.

[24] A. Jorio, F. M. Matinaga, A. Righi, M. S. S. Dantas, M. A. Pimenta, A. G. Souza, J. Mendes, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Resonance Raman scattering: Nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes, Brazilian Journal of Physics 2002, 32, 921-924.


[23] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Physical Review Letters 2001, 86, 1118-1121.

[22] A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. H. Hafner, C. M. Lieber, F. M. Matinaga, M. S. S. Dantas and M. A. Pimenta, Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering, Physical Review B 2001, 63.

[21] A. G. Souza, A. Jorio, J. H. Hafner, C. M. Lieber, R. Saito, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Electronic transition energy E-ii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio, Physical Review B 2001, 63.

[20] M. A. Pimenta, A. Jorio, S. D. M. Brown, A. G. Souza, G. Dresselhaus, J. H. Hafner, C. M. Lieber, R. Saito and M. S. Dresselhaus, Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes, Physical Review B 2001, 64.

[19] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Chirality-dependent G-band Raman intensity of carbon nanotubes, Physical Review B 2001, 64.

[18] T. W. Odom, J. H. Hafner and C. M. Lieber, Scanning probe microscopy studies of carbon nanotubes, Carbon Nanotubes 2001, 80, 173-211.

[17] J. H. Hafner, C. L. Cheung, A. T. Woolley and C. M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Progress in Biophysics & Molecular Biology 2001, 77, 73-110.

[16] M. Bockrath, W. J. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham and H. K. Park, Resonant electron scattering by defects in single-walled carbon nanotubes, Science 2001, 291, 283-285.

[15] J. H. Hafner, C. L. Cheung, T. H. Oosterkamp and C. M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, Journal of Physical Chemistry B 2001, 105, 743-746.

[14] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Electronic properties of mechanically induced kinks in single-walled carbon nanotubes, Applied Physics Letters 2001, 78, 3693-3695.

[13] G. R. Schnitzler, C. L. Cheung, J. H. Hafner, A. J. Saurin, R. E. Kingston and C. M. Lieber, Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips, Molecular and Cellular Biology 2001, 21, 8504-8511.


[12] T. T. Ding, J. C. Rochet, K. A. Conway, J. H. Hafner, S. J. Lee, C. M. Lieber and P. T. Lansbury, Molecular pathogenesis of Parkinson’s disease: results from atomic force microscopy of nonfibrillar alpha-synuclein assemblies., Biochemistry 2000, 39, 1574-1574.

[11] C. L. Cheung, J. H. Hafner and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 3809-3813.

[10] C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim and C. M. Lieber, Growth and fabrication with single-walled carbon nanotube probe microscopy tips, Applied Physics Letters 2000, 76, 3136-3138.

[9] A. T. Woolley, C. L. Cheung, J. H. Hafner and C. M. Lieber, Structural biology with carbon nanotube AFM probes, Chemistry & Biology 2000, 7, R193-R204.


[8] J. H. Hafner, C. L. Cheung and C. M. Lieber, Growth of nanotubes for probe microscopy tips, Nature 1999, 398, 761-762.

[7] J. H. Hafner, C. L. Cheung and C. M. Lieber, Direct growth of single-walled carbon nanotube scanning probe microscopy tips, Journal of the American Chemical Society 1999, 121, 9750-9751.


[6] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith and R. E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters 1998, 296, 195-202.

[5] J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Fullerene pipes, Science 1998, 280, 1253-1256.


[4] J. Liu, H. J. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Fullerene ‘crop circles’, Nature 1997, 385, 780-781.


[3] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature 1996, 384, 147-150.


[2] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Unraveling Nanotubes – Field-Emission from an Atomic Wire, Science 1995, 269, 1550-1553.


[1] D. T. Colbert, J. Zhang, S. M. Mcclure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E. Smalley, Growth and Sintering of Fullerene Nanotubes, Science 1994, 266, 1218-1222.

 



Leave a Reply